Оберіть свою мову

Телефонний довідник



Ukrainian English Estonian French German Italian Latvian Lithuanian Polish Spanish

До 80-річчя директора Інституту біохімії ім. О.В. Палладіна, академіка НАН та НАМН України С.В. КОМІСАРЕНКА вийшла в світ нова книга «ЛІДЕРИ НАУКОВОГО ПРОГРЕСУ: ПІД ЗНАКОМ НОБЕЛЯ». Видання друге, доповнене. Київ: Наукова думка. 2023. 678 c. (PDF)

УДК 577+60-22-61
Лідери наукового прогресу: під знаком Нобеля / С.В. Кîомісаренко, В.М. Данилова, Р.П. Виноградова, С.І. Романюк, О.П. Матишевська, М.В. Григор’єва,
Т.В. Данилова. За ред. С.В. Комісаренка, укл. В.М. Данилова. Видання друге, доповнене. Київ: Наукова думка, 2023. — 678 c.
ISBN 978-966-00-1904-1




Arts and Humanities


S.V. Komisarenko
Paladin Institute of Biochemistry of the NAS of Ukraine, Kyiv

V.M. Danilova
Palladin Institute of Biochemistry of the NAS of Ukraine, Kyiv

R.P. Vinogradova
Palladin Institute of Biochemistry of the NAS of Ukraine, Kyiv

S.I. Romanyuk
Palladin Institute of Biochemistry of the NAS of Ukraine, Kyiv

O.P. Matyshevska
Palladin Institute of Biochemistry of the NAS of Ukraine, Kyiv

M.V. Grigorieva
Palladin Institute of Biochemistry of the NAS of Ukraine, Kyiv

Т.V. Danylova
Institute for Social and Political Psychology, National Academy of Educational Sciences of Ukraine, Kyiv; 2The Graduate School for Social Research, Institute of Philosophy and Sociology of the Polish Academy of Sciences,Warsaw, Poland


M. V. Kuchuk
Acad. NAS of Ukraine, Prof., Dr.Sci.
Institute of Cell Biology and Genetic Engineering of the NAS of Ukraine, Kyiv
Scopus Author ID: 6603488876
ResearcherID: S-6631-2016

M.M. Veliky
Prof., Dr. Sci.
Palladin Institute of Biochemistry of the NAS of Ukraine, Kyiv
Scopus Author ID: 20434931200
ResearcherID: J-5686-2017


Project: Scientific book

Year: 2024

Publisher: PH "Naukova Dumka"






How to Cite:


Many awards honor outstanding scientific discoveries in various fields, but the Nobel Prize is regarded as the most prestigious by researchers worldwide. Nobel Prize winners—including physicists, chemists, physiologists, physicians, economists, writers, and public figures—are the intellectual elite, who have made significant contributions to humankind. Although there is no specialized prize for biochemistry, many scientists have received the Nobel Prize for their biochemical discoveries, awarded in the closely related disciplines of chemistry, physiology or medicine.

The book is a somewhat unique. This is a collection of articles (40 articles) reviewing the most prominent discoveries by Nobel laureates in the field of chemistry and physiology and/or medicine of the XXth and XXIst centuries. These discoveries have significantly impacted the development of new biomedical sciences, such as biochemistry, genetics, molecular biology, immunology, molecular and genetic medicine, etc. The collected articles were previously published in the academic journals “The Ukrainian Biochemical Journal” and “Visnyk (Bulletin) of the National Academy of Sciences of Ukraine”.  One of the articles is devoted to the person to whom the world owes the establishment and implementation of this award – Alfred Bernhard Nobel.

This book is intended for specialists in experimental and applied biomedical sciences, lecturers, university students, and anyone interested in the progress and development of science.


Alfred Nobel, Nobel Prize, physics, chemistry, physiology, medicine, benefit to humanity, biochemistry, genetics, molecular biology, immunology, molecular medicine


  1. Surprising Facts About Alfred Nobel — Biography. https://www.biography.com/news/alfred-nobel-biography-facts.
  2. Alfred Nobel — Biography, Facts and Pictures — Famous Scientists. https://www.famousscientists.org/alfred-nobel/
  3. Alfred Nobel | 10 Facts on the Man Behind the Nobel Prizes. https://learnodo-newtonic.com/alfred-nobel-facts.
  4. Interesting Facts About Alfred Nobel. https://ohfact.com/interesting-facts-about-alfred-nobel/
  5. Michael Evlanoff; Marjorie Fluor. Alfred Nobel, the loneliest millionaire. Ritchie Press, 1969. 336 p.
  6. Danylova Т.V., Komisarenko S.V. Scientific investigations of the Nobel prize winner Emil Fischer as a launching pad for the development of biochemistry: a brief overview. Ukr. Biochem. J. 2018. Vol. 90, N 4. P. 135—142.
  7. Vennesland, Birgit; Stotz, Elmer H. Biochemistry. Encyclopaedia Britannica. https://www.britannica.com/science/biochemistry.
  8. The Philosophy and History of Molecular Biology: New Perspectives; ed. by Sahotra Sarkar. Kluwer Academic Publishers, 1996.
  9. Danylova T. Eastern Spiritual Traditions through the Lens of Modern Scientific Worldview. Anthropological Measurements of Philosophical Research. 2014. Vol. 5. P. 95—102.
  10. The Nobel Prize in Chemistry 1902. Nobelprize. org. Nobel Media AB 2014. Web. 12 Jan. 2018. http://www.nobelprize.org/nobel_prizes/ chemistry/laureates/1902/index.html.
  11. Nobel Lectures, Chemistry 1901—1921. World Scientific Publishing Co. Pte. Ltd., 1999.
  12. Emil Fischer. Biographical. Nobelprize.org. Nobel Media AB 2014. Web. 12 Jan. 2018. http:// www.nobelprize.org/nobel_prizes/chemistry/ laureates/1902/fischer-bio.html.
  13. Rittner D, Bailey RA. Encyclopaedia of Chemistry. Facts on File, Inc., 2005.
  14. Emil Fischer. The Franklin Institute. https:// www.fi.edu/laureates/emil-fischer.
  15. Nagendrappa G. Hermann Emil Fischer: Life and Achievements. 2011. Vol. 16, N 7. P. 606—618.
  16. Schneider H.-J. Limitations and Extensions of the Lock-and-Key Principle: Differences between Gas State, Solution and Solid State Structures. International Journal of Molecilar Sciences. 2015. Vol. 16. P. 6694—6717. doi:10.3390/ijms16046694.
  17. Wieland Th., Bodanszky M. The World of Peptides. A Brief History of Peptide Chemistry. Springer-Verlag Berlin Heidelberg, 1991.
  18. Seymour R.B., Mark H.F., Pauling L. et al. Pioneers in Polymer Science. Ed. by R.B. Seymour. Kluwer Academic Publishers, 1989.
  19. Debus A.G. World Who’s Who in Science. Chicago: Marquis — Who’s Who, Inc., 1968.
  20. Emil Fischer Award. 19th European Carbohydrate Symposium EUROCARB, July, 2—6, 2017. http:// eurocarb2017.com/index.php/awards/emilfischer-award.
  21. Ezepchuk Yu., Kolybo D.V. Nobel laureate Ilya I.Metchnikoff (1845-1916). Lafe story and scientific heritage. Ukr. Biochem. J. 2016. Vol. 88, N 6. 98—109.
  22. Romaniuk S.I., Komisarenko S.V. Visnyk of the National Academy of Sciences of Ukraine. No 1. P. 49–54.
  23. Komisarenko S.V. One Hundred Years of Immunology – The Science of the Future. Ukr. Biochem. 1982. Vol. 54, No 5. P. 483–496.
  24. Danylova V.M., Vinogradova R.P., Komisarenko S.V. Alfred Bernard Nobel and the Nobel Prize. Biochem. J. 2018. Vol. 90, No 4. P. 121–134.
  25. Robert Koch: A Brief Biography. Access mode: dovidka.biz.ua/robert-koh-biografiya/1. Ball P. Schrödinger’s cat among biology’s pigeons: 75 years of What is Life? Nature. 2018. Vol. 560. P. 548—550. doi: 10.1038/d41586-018-06034-8.
  26. Vynogradova R.P., Danilova V.М., Komisarenko S.V. The Nobel laureates contribution to the study of carbohydarte metabolism and its regulation. A. Harden, h. Euler-Chelpin, C.F. Cori, G.T. Cori, Е. Sutherland, L.F. Leloir, H. Krebs, F. Lipmann, P. Mitchell. Ukr. Biochem. J. 2020. Vol. 92, N 1. P. 135—163. doi: https://doi.org/10.15407/ubj92.01.136.
  27. Linus Pauling. X-ray crystallography and the nature of the chemical bond. Oregon State University’s Special Collection, April 1991. scar.library.oregon state edu/coll/pauling/bond/notes/1991/ a.3.3.html.
  28. Danylova T., Komisarenko S. Born in Ukraine: Nobel Prize Winners Ilya Mechnikov, Selman Waksman, Roald Hoffmann and Georges Charpak. Ukr. Biochem. J. 2019. Vol. 91, N 3. P. 127—137. doi: https://doi.org/10.15407/ubj91.03.127.
  29. Flaubert G. The Temptation of St. Anthony. 2016. Regime of access: http://www.gutenberg.org/files/52225/52225-h/52225-h.htm.
  30. Buchner Edward. Nobel Prize Laureates: Encyclopedia: A—L: Trans. from English. M.: Progress, 1992. P. 211—214.
  31. Vinokurov S.I., Chagovets R.V. Maria Manasseina and her contribution to the discovery of acellular fermentation. Biokhimiia. 1950. Vol. 15, N 6. S. 558—562.
  32. Manasseina M. To the doctrine of alcoholic fermentation. Medical Herald. 1871. Vol. 8. S. 57—59.
  33. Kossel Albrecht. Biologists: Biographical directory. K.: Naukova Dumka, 1984. P. 325—326.
  34. Willstätter Richard. Nobel Prize Laureates: Encyclopedia: A—L: Trans. from English. M.: Progress, 1992. P. 275—278.
  35. Manasseina M. Beiträge zur Kenntnis der Hefe zur Lehre von der alkoholishen Gärung. Mikroskopische Untersuchungen, Stuttgart, 187. S. 116—128.
  36. Banting Frederick G. Nobel Prize Laureates: Encyclopedia: A—L: Trans. from English. M.: Progress, 1992. P. 55—58.
  37. Banting Frederick Grant. Biologists: Biographical directory. K.: Naukova Dumka, 1984. P. 39—40.
  38. Macleod John James Rickard. Nobel Prize Laureates: Encyclopedia: M—Ya: Trans. From English. M.: Progress, 1992. P. 13—16.
  39. Macleod John. Biologists: Biographical directory. K.: Naukova Dumka, 1984. P. 393.
  40. Kendall Edward. Nobel Prize Laureates: Encyclopedia: A—L: Trans. from English. M.: Progress, 1992. P. 538—541.
  41. Volkov V.А., Vonsky Е.V., Kuznetsova G.I. Kendall Edward Calvin. Prominent chemists of the world: Biographical reference book; ed. V.I. Kuznetsova. M.: Vyshcha shkola, 1991. P. 201.
  42. Eijkman Christiaan. Nobel Prize Laureates: Encyclopedia: M—Ya: Trans. from English. M.: Progress, 1992. P. 793—796.
  43. Eijkman Christiaan. Biologists: Biographical directory. K.: Naukova Dumka, 1984. P. 721.
  44. Neurologist who opened the way to vitamins: Christiaan Eijkman. Regime of access : https://biomolecula.ru/articles/nevrolog-otkryvshii-put-k-vitaminam-khristian-eikman.Hopkins Frederick Gowland. Biologists: Biographical directory. K.: Naukova Dumka, 1984. P. 184—185.
  45. Hopkins Frederick Gowland. Regime of access : http://biographerai/net/biography/php>.
  46. Vynogradova R.P., Danilova V.M., Komisarenko S.V. Development on knowledge of hormone biochemistry in the works of the Nobel prize laureates of the first half of the 20th century: F.G. Banting, John J.R. Macleod, H.O. Wieland, A.O. Windaus, A.F. Butenandt, L. Ružička, E. Kendall, P. Hench, T. Reichstein. Ukr. Biochem. J. 2019. Vol. 91, N 3. P. 107—126.
  47. Danilova V.M., Vynogradova R.P., Komisarenko S.V. Nobel Laureates of the early 20th century E. Behring, I. Mechnikov, P. Ehrlich, C. Richet, J. Bordet, K. Landsteiner and their contribution to the development of molecular immunology. Ukr. Biochem. J. 2018. Vol. 90, N 6. P. 126—142.
  48. Harden Artur. Nobel Prize Laureates: Encyclopedia: A—L: Trans. from English. M.: Progress, 1992. P. 310—312.
  49. Carl F. Cori (1896–1984) Medical Journeys. Regime of access : http://beckerxhibits.wustl.edu/mig/bios/coric.html.
  50. Houssay Bernardo. Nobel Prize Laureates: Encyclopedia: M—Ya: Trans. from English. M.: Progress, 1992. P. 539—542.
  51. Krebs Hans. Nobel Prize Laureates: Encyclopedia: A—L: Trans. from English. M.: Progress, 1992. P. 601—603.
  52. Mitchell Piter Dennis. Nobel Prize Laureates: Encyclopedia: M—Ya: Trans. from English. M.: Progress, 1992. P. 93—96.
  53. The Svedberg Biographical. Regime of access : https://www.nobelprize.org/prizes/chemistry/1926/svedberg/biographical/American Chemical Society. 1926. Vol. 48, N 9. P. 2272—2278.
  54. Tiselius A. The moving-boundary method of studying the electrophoresis of proteins. Nova Acta Regiae Societatis Scientiarium Upsaliensis. 1931. Vol. 7, N 4, ser. IV. 107 p.
  55. Staudinger H. Das Wissenschaftliche Werk von Hermann Staudinger. Verlag Hüthig & Wepf: Basel, 1969—1976.
  56. Staudinger H. From organic chemistry to macromolecules; a scientific autobiography on my original papers. Wiley-Interscience: New York, London, Sydney, and Toronto, 1970 (translation of Arbeitserinnerungen, Dr. Alfred Hüthig Verlag: Heidelberg, 1961).
  57. Leonard A. Maynard. James Batcheller Sumner. 1887—1955. National Academy of sciences, Washinton, 1958.
  58. Wendell M. Stanley. The isolation and properties of crystalline tobacco mosaic virus, Nobel Lecture, December 12, 1946.
  59. Linus Pauling. The last interview. 1994 The Institute for Optimum Nutrition. Regime of access : http://www.internetwks.com/pauling/lastpinv.html.
  60. Grigorieva M.V., Danilova V.M., Komisarenko S.V. Brownian motion, electrophoresis, chromato-graphy, and macromolecular chemistry: how it all unites Nobel laureates of the first half of the 20th century — T. Svedberg, A. Tiselius, R. Synge and H. Staudinger. Ukr. Biochem. J. 2019. Vol. 91, N 5. P. 70—79.
  61. Max Ferdinand Perutz. Nobel Prize Laureates: Encyclopedia: M—Ya: Trans. from English. M.: Progress, 1992. P. 214—216.
  62. Anfinsen Christian. Nobel Prize Laureates: Encyclopedia: A—L: Trans. from English. M.: Progress, 1992. P. 29—32.
  63. John E. Walker. Regime of access : https://uk.wikipedia.org/wiki/
  64. Lyan N.A. John Robert Vane. Allergol Immunol Pediatr. 2015. Vol. 4, N 43. P. 4—8. 5. Nobel Prize Laureates: Encyclopedia. Trans. from English M.: Progress, 1992. 6. Konrad Emil Bloch. Regime of access : https://uk.wikipedia.org/ wiki/
  65. Bengt Samuelsson. Regime of access : https://uk.wikipedia.org/wiki/
  66. Michael Stuart Brown. Regime of access : https://uk.wikipedia.org/wiki/
  67. Joseph Leonard Goldstein. Regime of access : https://uk.wikipedia.org/wiki/
  68. Linus Pauling. Facts. The Nobel Prize. 1962. Regime of access: https://www.nobelprize.org/prizes/peace/1962/pauling/facts/.
  69. Cairns G.E. The philosophy and psychology of the oriental mandala. Philosophy East and West. 1962. Vol. 11, N 4. P. 219—229.
  70. Danylova T.V., Komisarenko S.V. Standing on the shoulders of giants: James Watson, Francis Crick, Maurice Wilkins, Rosalind Franklin and the birth of molecular biology. Ukr. Biochem. J. 2020. Vol. 92, N 4. P. 154—165.
  71. Navarro S. Molecular Biology Gene to Proteins. ED-TECH Press, 2018. 308 p.
  72. Regime of access: The Nobel Prize in Physiology or Medicine 1959 (engl.)
  73. Severo Ochoa. Regime of access: https://indicator.ru/medicine/nobelevskie-laureaty-severo-ochoa.htm.
  74. Ochoa S., Valdecasas J.G. A micro method for the estimation of total creatinine in muscle. J. Biol. Chem. 1929. Vol. 81, N 2. P. 351—357.
  75. Lehman I.R., Bessman M.J., Simms E.S., Kornberg A. Enzymatic synthesis of deoxyribo-nucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J. Biol. Chem. 1958. Vol. 233, N 1. P. 163—170.
  76. Bessman M.J., Lehman I.R., Simms E.S., Kornberg A. Enzymatic synthesis of deoxyribo-nucleic acid. II. General properties of the reaction. Journal of Biological Chemistry. 1958. Vol. 233, N 1. P. 171—177.
  77. Kornberg A. Regime of access: https://www.nobelprize.org/prizes/medicine/1959kornberg/biographical/2. Dahm R. Friedrich Miescher and the Discovery of DNA. Developmental Biology. 2005. Vol. 278, N 2. P. 274—288. https://doi.org/10.1016/j.ydbio.2004.11.028
  78. Paweletz N. Walther Flemming: pioneer of mitosis research. Nature Reviews. Molecular Cell Biology. 2001. Vol. 2. P. 72—75.
  79. Erwin Chargaff. National Medal of Science. Biological Sciences. National Science & Technology Medals Foundation. Regime of access: https://www.nationalmedals.org/laureates/erwin-chargaff.
  80. Hall K. Watson and Crick took all the glory, but there’s a forgotten hero of the double helix. The Conversation. 2014. Regime of access: https://theconversation.com/watson-and-crick-took-all-the-glory-but-theres-a-forgotten-hero-of-the-double-helix-28536.
  81. Watson J. The Double Helix: A Personal Account of the Discovery of the Structure of DNA. Touchstone, 2001. 83 p. sites.bu.edu › files › 2017/09.
  82. Portrait of Francis Crick. 1955. Linus Pauling and the race for DNA. Regime of access: http://scarc.library.oregonstate.edu/coll/pauling/dna/pictures/portrait-crick.html.
  83. Rosalind Franklin tomb. Himetop. The History of Medicine Topographical Database. Regime of access: http://himetop.wikidot.com/rosalind-franklin-tomb.
  84. Pharmaceutical encyclopedia. Regime of access : https://www.pharmencyclo-pedia.com.ua.
  85. Jacob François. The statue within: an autobiography. Basic books, New York, 1988.
  86. François Jacob. Regime of access : https://www.nobelprize.org/nobel_prizes/medicine/laureates/1965/jacob-lecture.pdf.
  87. Watson J.D. RoLe of RNA in the synthesis of proteins. Biofizika. 1963. Vol. 8. P. 401—416. (In Russian).
  88. Regime of access : https://www.nobelprize.org/prizes/medicine/1965/summary/.
  89. Jacob F., Monod J. Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology. 1961. Vol. 3, N 3. P. 318—356.
  90. André Lwoff. Interaction among Virus, Cell, and Organism. Nobel Lecture, December 11, 1965.
  91. Nobel laureates: André Lwoff. Regime of access : https://indicator.ru/biology/nobelevskie-laureaty-andre-lvov.htm.
  92. Jacques Lucien Monod, 9 February 1910 — 31 May 1976. Biografical Memoirs of Fellows of the Royal Society. 1977. Vol. 3. P. 384—412.
  93. Jacques Monod. Le hasard et la nécessité. Paris, Editions du Seuil, 1970.
  94. Nirenberg M.W., Matthaei J.H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. PNAS. 1961. Vol. 47, N 10. P. 1588—1602.
  95. Speyer J.F., Lengyel P., Basilio C., Wahba A.J., Gardner R.S., Ochoa S. Synthetic polynucleotides and the amino acid code. Cold Spring Harbor Symposia Quantitative Biology. 1963. Vol. 28. P. 559—567.
  96. Kaji A., Kaji H. Specific interaction of soluble RNA with polyribonucleic acid induced polysomes. Biochem and Biophysical Research Communications. 1963. Vol. 13, N 3. P. 186—192.
  97. Nirenberg M., Leder P. RNA codewords and protein synthesis. The effect of trinucleotides upon the binding of sRNA to ribosomes. Science. 1964. Vol. 145, N 3639. P. 1399—1407.
  98. Frederick Sanger. Facts. The Nobel Prize. 1958. Regime of access : https://www.nobelprize.org/prizes/chemistry/1958/sanger/facts/
  99. Sanger’s early life: From the cradle to the laboratory. What is Biotechnology? Regime of access : https://www.whatisbiotechnology.org/index.php/exhibitions/sanger/early.
  100. Jeffers J.S. Frederick Sanger: Two-Time Nobel Laureate in Chemistry. Springer, 2017. 99 p.
  101. Brownlee G.G. Fred Sanger — Double Nobel Laureate (A Biography). Cambridge University Press, 2014. 223 p.
  102. Sanger F. Sequences, sequences, and sequences. Annual Review Biochemistry. 1988. Vol. 57. P. 1—28.
  103. Kleppe K., Ohtsuka E., Kleppe R. et al. Studies on polynucleotides. XCVI. Repair replications of short synthetic DNA’s as catalyzed by DNA polymerases. Journal of Molecular Biology. 1971. Vol. 56, N 2. P. 341—361.
  104. Matyshevska O.P., Danilova V.M., Komisarenko S.V. The discovery of the mechanisms of biological synthesis of nucleic acids: 1959 Nobel laureates S. Ochoa and A. Kornberg. Ukr. Biochem. J. 2021. Vol. 93, N 1. P. 129—138.
  105. Saiki R.K., Scharf S., Faloona F. et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985. Vol. 230, N 4732. P. 1350—1354.
  106. Mullis K. Dancing Naked in the Mind Field. USA: Vintage Books, 1998. 240 p.
  107. Gregersen E. (Ed.). Nitric oxide. Britannica. Regime of access: https://www.britannica.com/science/nitric-oxide. (Accessed February 4, 2022).
  108. McEvoy J.G. Joseph Priestley: English clergyman and scientist. Britannica. 2022. Regime of access: https://www.britannica.com/biography/Joseph-Priestley. (Accessed February 3, 2022).
  109. The Top 300 of 2019. ClinCalc. 2019. Regime of access: https://clincalc.com/DrugStats/Top300Drugs.aspx. (Accessed February 5, 2022).
  110. Steinhorn B.S., Loscalzo J., Michel T. Nitroglycerin and Nitric Oxide — A Rondo of Themes in Cardiovascular Therapeutics. The New England Journal of Medicine. 2015. Vol. 373. P. 277—280.
  111. Brenner S. A Life in Science. Publisher : BioMed Central Ltd (June 1, 2001), London, 2001. 191 p.
  112. Horvitz H.R., Sulston J.E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics. 1980. Vol. 96, N 2. P. 435—454.
  113. Sulston J.E., Horvitz H.R. Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. Developmental Biology. 1981. Vol. 82, N 1. P. 41—55.
  114. Sulston J.E., White J.G. Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans. Developmental Biology. 1980. Vol. 78, N 2. P. 577—597.
  115. Chalfie M., Sulston J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Developmental Biology. 1981. Vol. 82, N 2. P. 358—370.
  116. Hershko A., Tomkins G.M. Studies on the degradation of tyrosine aminotransferase in hepatoma cells in culture. Influence of the composition of the medium and adenosine triphosphate dependence. Journal of Biological Chemostry. 1971. Vol. 246, N 3. P. 710—714.
  117. Etlinger J.D., Goldberg A.L. A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. PNAS. 1977. Vol. 74, N 1. P. 54—58.
  118. Sudakin V., Ganoth D., Dahan A. et al. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Molecular Biology of Cell. 1995. Vol. 6, N 2. P. 185—197.
  119. Rose I.A., Schweigert B.S. Effect of vitamin B12 on nucleic acid metabolism of the rat. Proceedings of the Socierty for Experimental Biology and Medicine. 1952. Vol. 79, N 3. P. 541—544.
  120. Rose I.A., Schweigert B.S. Incorporation of C14 totally labeled nucleosides into nucleic acids. Journal of Biological Chemistry. 1953. Vol. 202, N 2. P. 635—645.
  121. Haas A.L., Murphy K.E., Bright P.M. The inactivation of ubiquitin accounts for the inability to demonstrate ATP, ubiquitin-dependent proteolysis in liver extracts. Journal of Biological Chemistry. 1985. Vol. 260, N 8. P. 4694—4703.
  122. Ciehanover A., Hod Y., Hershko A. A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochemical and Biophysical Research Communications. 1978. Vol. 81, N 4. P. 1100—1105.
  123. Ciechanover A., Heller H., Elias S. et al. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. PNAS. 1980. Vol. 77, N 3. P. 1365—1368.
  124. Glickman M.H., Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiological Reviews. 2002. Vol. 82, N 2. P. 373—428.
  125. Sakamoto K.M. Ubiquitin-dependent proteolysis: its role in human diseases and the design of therapeutic strategies. Molecular Genetical and Metabolism. 2002. Vol. 77, N 1-2. P. 44—56.
  126. Roger D. Kornberg. The molecular basis of eukaryotiс transcription. Nobel Lecture. 2006. Stanford University, School of Medicine, Stanford, USA. DOI: 10.1002/anie.200701832
  127. Roger D. Kornberg — Facts — NobelPrize.org.Kornberg R.D., Thomas J.O. Chromatin structure; oligomers of the histones. Science. 1974. Vol. 184. P. 865—868.
  128. Butenko Z.A., Komissarenko S.V., Gruzov M.A. et al. Immunoelectronmicroscopy of the bone marrow mononuclears labeling with rabbit anti-mouse brain serum using peroxidase-anti-peroxidase method. Blut. 1983. Vol. 47, N 6. P. 343—349.
  129. Gurdon J.B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Journal of Embryology and Experimental Morphology. 1962. N 10. Р. 622—640.
  130. Wilmut I., Schnieke A.E., McWhir J. et al. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997. Vol. 385, N 6619. P. 810—813.
  131. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006. N 126. Р. 663—676.
  132. Okita K., Ichisaka T., Yamanaka S. Generation of germ line-competent induced pluripotent stem cells. Nature. 2007. Vol. 448. Р. 313—317.
  133. Zhao X.Y., Li W., Lv Z. et al. iPS cells produce viable mice through tetraploid complementation. Nature. 2009. Vol. 461, N 7260. Р. 86—90.
  134. Palczewski K., Kumasaka T., Hori T. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science. 2000. Vol. 289, N 5480. P. 739–745.
  135. Rasmussen S.G., Choi H.J., Rosenbaum D.M. et al. Crystal structure of the human b2-adrenergic G-protein-coupled receptor. Nature. 2007. Vol. 450, N 7168. P. 383—387.
  136. Rosenbaum D.M., Cherezov V., Hanson M.A. et al. GPCR engineering yields high-resolution structural insights into b2-adrenergic receptor function. Science. 2007. Vol. 318, N 5854. P. 1266—1273.
  137. Cherezov V., Rosenbaum D.M., Hanson M.A. et al. High-resolution crystal structure of an engineered human b2-adrenergic G protein-coupled receptor. Science. 2007. Vol. 318, N 5854. P. 1258—1265.
  138. Rasmussen S.G.F., DeVree B.T., Zou Y. et al. Crystal structure of the b2-adrenergic receptor — Gs protein complex. Nature. 2011. Vol. 477, N 7366. P. 549—555.
  139. Novick P., Field C., Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980. Vol. 21, N 1. P. 205—215.
  140. Block M.R., Glick B.S., Wilcox C.A. et al. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. PNAS. 1988. Vol. 85, N 21. P. 7852—7856.
  141. Weidman P.J., Melançon P., Block M.R., Rothman J.E. Binding of an N-ethylmaleimide-sensitive fusion protein to Golgi membranes requires both a soluble protein(s) and an integral membrane receptor. Journal of Biological Chemistry. 1989. Vol. 108, N 5. P. 1589—1596.
  142. Oyler G.A., Higgins G.A., Hart R.A. et al. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. Journal of Biological Chemistry. 1989. Vol. 109, N 6 (Pt. 1). P. 3039—3052.
  143. Forecasting the 2015 Nobel Prize winner. http://thomsonreuters.com/en/press-releases/2015/september/thomsonreuters-forecasts-nobel-prize-winners.html.
  144. The 2015 Nobel Prize in Chemistry. Press Release. http://www.nobelprize.org/nobel_prizes/chemistry/ laureates/2015/press.html.
  145. Watson J.D., Crick F.H. The structure of DNA. Cold Spring Harb. Symp. Quant. Biol. 1953. Vol. 18. P. 123.
  146. De Bont R., van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis. 2004. Vol. 19, N 3. P. 169.
  147. DNA damage (naturally occurring). https://en.wikipedia.org/wiki/DNA_damage_(naturally_occurring)#cite_note-31.
  148. Gustafsson C.M. Mechanistic studies of DNA repair. http://www.nobelprize.org/nobel_prizes/chemistry/ laureates/2015/advanced-chemistryprize2015.pdf.
  149. Lindahl T. An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cystosine residues. PNAS. 1974. Vol. 71, N 9. P. 3649.
  150. Lindahl T. DNA glycosylases in DNA repair. Basic Life Sciences. 1986. Vol. 38. P. 335.
  151. Schiller C.B., Seifert F.U., Linke-Winnebeck C., Hopfner K.P. Structural studies of DNA end detection and resection in homologous recombination. Cold Spring Harbor Perspect in Biology. 2014. Vol. 6, N 10. a017962.
  152. Waters C.A., Strande N.T., Wyatt D.W. et al. Nonhomologous end joining: a good solution for bad ends. DNA Repair. 2014. Vol. 17. P. 39.
  153. The 2017 Clarivate Citation Laureates. https://clarivate.com/2017-citation-laureates/The Nobel Prize in Physiology or Medicine 2017. Press Release. https://www.nobelprize.org/nobel_prizes/medicine/laureates/2017/press.html.
  154. Circadian rhythm. From Wikipedia. https://en.wikipedia.org/wiki/Circadian_rhythm.
  155. Sulzman F.M., Ellman D., Fuller C.A. et al. Neurospora circadian rhythms in space: a reexamination of the endogenous-exogenous question. Science. 1984. Vol. 225. P. 232. http://www.jstor.org/stable/1693133.
  156. Halberg F. Chronobiology. Annual Review Physiology. 1969. Vol. 31. P. 675. https://doi.org/10.1146/annurev.ph.31.030169.003331.
  157. Konopka R.J., Benzer S. Clock mutants of Drosophila melanogaster. PNAS. 1971. Vol. 68, N 9. P. 2112. http://dx.doi.org/10.1073/pnas.68.9.2112.
  158. Press release: The Nobel Prize in Physiology or Medicine 2018. https://www.nobelprize.org/prizes/medicine/2018/ press-release/
  159. Global Cancer Observatory, 2018. http://gco.iarc.fr/
  160. From Wikipedia, the free encyclopedia. James P. Allison. https://en.wikipedia.org/wiki/James_P._Allison.
  161. From Wikipedia, the free encyclopedia. Tasuku Honjo. https://en.wikipedia.org/wiki/Tasuku_Honjo.
  162. The 2018 Clarivate Citation Laureates. https://web.ornl.gov/sci/first/ClarivateAnalyticsCitationLaureates.pdf.
  163. The Nobel Prize in Chemistry 2018. Press Release. https://www.nobelprize.org/prizes/chemistry/2018/press-re lea.
  164. Nobel prize in literature 2018 cancelled after sexual assault scandal. https://www.theguardian.com/books/2018/ may/04/nobel-prize-for-literature-2018-cancelled-after-sexual-assault-scandal/.
  165. Frances Arnold. Wikipedia. https://en.wikipedia.org/wiki/Frances_Arnold.
  166. George Smith. Wikipedia. https://en.wikipedia.org/wiki/George_Smith_(chemist).
  167. Greg Winter. Wikipedia. https://en.wikipedia.org/wiki/Greg_Winter.
  168. Spiegelman S., Haruna I., Holland I.B., Beaudreau G., Mills D. The Synthesis of a Self-propagating and Infectious Nucleic Acid with a Purified Enzyme. PNAS. 1965. Vol. 54, N 3. P. 919. http://dx.doi.org/10.1073/ pnas.54.3.919.
  169. Chen C., Constantinou A., Deonarain M. Modulating antibody pharmacokinetics using hydrophilic polymers. Expert Opinion on Drug Delivery. 2011. Vol. 8, N 9. P. 1221. http://dx.doi.org/10.1517/17425247.2011.602399.
  170. Könning D., Kolmar H. Beyond antibody engineering: directed evolution of alternative binding scaffolds and enzymes using yeast surface display. Microbial Cell Factories. 2018. Vol. 17, N 1. P. 32. http://dx.doi.org/10.1186/s12934-018-0881-3.
  171. Ye L., Yang C., Yu H. From molecular engineering to process engineering: development of high-throughput screening methods in enzyme directed evolution. Applied Microbiology and Biotechnology. 2018. Vol. 102, N 2. P. 559. http://dx.doi.org/10.1007/ s00253-017-8568-y.
  172. Liu C.C., Mack A.V., Tsao M.L. et al. Protein evolution with an expanded genetic code. PNAS. 2008. Vol. 105, N 46. P. 17688. http://dx.doi.org/10.1073/ pnas.0809543105.
  173. Citation Laureates 2019. https://clarivate.com/webofsciencegroup/wp-content/uploads/sites/2/dlm_uploads/ 2019/09/Citation_Laureates_2019.pdf.
  174. The Nobel Prize in Physiology or Medicine 2019. Press release. https://www.nobelprize.org/prizes/medicine/2019/ press-release/
  175. William Kaelin Jr. Wikipedia. https://en.wikipedia.org/wiki/William_Kaelin_Jr.
  176. Carolyn Kaelin. Wikipedia. https://en.wikipedia.org/wiki/Carolyn_Kaelin.
  177. Peter J. Ratcliffe. Wikipedia. https://en.wikipedia.org/wiki/Peter_J._Ratcliffe.
  178. Gregg L. Semenza. Wikipedia. https://en.wikipedia.org/wiki/Gregg_L._Semenza.
  179. Physiology or Medicine. Citation Laureates 2020. https://clarivate.com/webofsciencegroup/citation-laureates/ physiology-or-medicine/
  180. Press release: The Nobel Prize in Physiology or Medicine 2020. https://www.nobelprize.org/prizes/medicine/2020/ press-release/
  181. Harvey J. Alter. Wikipedia. https://en.wikipedia.org/wiki/Harvey_J._Alte.r
  182. Michael Houghton (virologist). Wikipedia. https://en.wikipedia.org/wiki/Michael_Houghton_(virologist).
  183. Charles M. Rice. Wikipedia. https://en.wikipedia.org/wiki/Charles_M._Rice.
  184. World Health Organization. https://www.who.int/health-topics/hepatitis#tab=tab_1
  185. Komisarenko S.V., Romanyuk S.I. Genome editing, or CRISPR/Cas9 — a panacea for many incurable diseases or the first step to a gene apocalypse? Вісник НАН України. 2020. Vol. 3. P. 50—77.
  186. Jennifer Doudna. Wikipedia. https://en.wikipedia.org/wiki/Jennifer_Doudna.
  187. Emmanuelle Charpentier. Wikipedia. https://en.wikipedia.org/wiki/Emmanuelle_Charpentier.
  188. Deltcheva E., Chylinski K., Sharma C.M. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011. Vol. 471, N 7340. P. 602—607.
  189. Westra E.R., Semenova E., Datsenko K.A. et al. Type I-E CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet. 2013. Vol. 9, N 9. P. e1003742.
  190. Ishino Y., Shinagawa H., Makino K. et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology. 1987. Vol. 169, N 12. P. 5429—5433.
  191. Hedestam G.K. Discoveries concerning the genomes of extinct hominins and human evolution. https://www.nobelprize.org/prizes/medicine/2022/advanced-information/5. Zukerkandl E., Pauling L. Molecules as documents of evolutionary history. Journal of Theoretical Biology. 1965. Vol. 8, N 2. P. 357—366. https://doi.org/10.1016/0022-5193(65)90083-4.
  192. Pääbo S. Molecular cloning of Ancient Egyptian mummy DNA. Nature. 1985. Vol. 314, N 6012. P. 644—645. https://doi.org/10.1038/314644a0.
  193. Cann R.L., Stoneking M., Wilson A.C. Mitochondrial DNA and human evolution. Nature. 1987. Vol. 325, N 6099. P. 31—36. https://doi.org/10.1038/325031a0.
  194. Pääbo S., Wilson A.C. Polymerase chain reaction reveals cloning artefacts. Nature. 1988. Vol. 334, N 6181. P. 387—388. https://doi.org/10.1038/334387b0.
  195. Nobel Prize facts. The Nobel Prize. Regime of access: https://www.nobelprize.org/prizes/facts/nobel-prize-facts/#note.
  196. Gilbert S.F. (Ed.). A Conceptual History of Modern Embryology. The John Hopkins University Press, 1994. 280 p.
  197. Racine V. Ilya Ilyich Mechnikov (Élie Metchnikoff) (1845—1916). The Embryo Project Encyclopaedia. Regime of access: https://embryo.asu.edu/pages/ilya-ilyich-mechnikov-elie-metchnikoff-1845-1916.
  198. Ezepchuk Yu.V., Kolybo D.V. Nobel Laureate Ilya Metchnikoff (1845—1916). Life Story and Scientific Heritage. Ukr. Biochem. J. 2016. Vol. 88, N 6. P. 98—109.
  199. Ilya Mechnikov. Facts. The Nobel Prize. Regime of access: https://www.nobelprize.org/prizes/medicine/1908/mechnikov/facts/
  200. George Charpak. Nobel Lecture. December 8, 1992. The Nobel Prize. 1992. Regime of access: https://www.nobelprize.org/prizes/physics/1992/charpak/lecture/
  201. Maugh II T.H. Georges Charpak dies at 86; French physicist won Nobel Prize. Los Angeles Times. October 8, 2010. Regime of access: http://articles.latimes.com/2010/oct/08/local/la-me-georges-charpak-20101008.
  202. Oakes E.H. Encyclopaedia of World Scientists. Infobase Publishing, 2007. 852 p.
  203. Garwin R.L., Charpak G. Megawatts and Megatons: A Turning Point in the Nuclear Age? Alfred A. Knopf, 2001. 412 p.
  204. Ivan Kurilla. The Last Year for Russian Academia? http://www.wilsoncenter.org/article/the-last-year-for-russianacademia.
  205. Garfield E. Citation indexes to science: a new dimension in documentation through association of ideas. Science. 1955. Vol. 122, N 3159. P. 108—111.
  206. Hirsch J.E. An index to quantify an individual’s scientific research output. PNAS. 2005. Vol. 102, N 46. P. 16569—16572.
  207. Arnold D.N., Fowler K.K. Nefarious Numbers. Notices of the American Mathematical Society. 2011. Vol. 58, N 3. P. 434—437.
  208. Noorden Van R., Maher B., Nuzzo R. The top 100 papers. Nature News. 2014. Vol. 514, N 7524. P. 550—553.
  209. Schekman R. How journals like Nature, Cell and Science are damaging science. The Guardian. 2013. Dec. 9.
  210. Tang D.C., DeVit M., Johnston S.A. Genetic immunization is a simple method for eliciting an immune response. Nature. 1992. 356(6365): 152—154. https://doi.org/10.1038/356152a0
  211. Martinon F., Krishnan S., Lenzen G., Magné R., Gomard E., Guillet J.G., Lévy J.P., Meulien P. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur. J. Immunol. 1993. 23(7): 1719—1722. https://doi.org/10.1002/eji.1830230749
  212. Liu M.A., Ulmer J.B. Human clinical trials of plasmid DNA vaccines. Adv. Genet. 2005. 55: 25—40. https://doi. org/10.1016/S0065-2660(05)55002-8
  213. Brenner S., Jacob F., Meselson M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature. 1961. 190: 576—581. https://doi.org/10.1038/190576a0
  214. Gros F., Hiatt H., Gilbert W., Kurland C.G., Risebrough R.W., Watson J.D. Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature. 1961. 190: 581—585. https://doi.org/10.1038/190581a0
  215. Lockard R.E., Lingrel J.B. The synthesis of mouse hemoglobin beta-chains in a rabbit reticulocyte cell-free system programmed with mouse reticulocyte 9S RNA. Biochem. Biophys. Res. Commun. 1969. 37(2): 204—212. https://doi. org/10.1016/0006-291x(69)90720-7
  216. Gurdon J.B., Lane C.D., Woodland H.R., Marbaix G. Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature. 1971. 233(5316): 177—182. https://doi.org/10.1038/233177a0
  217. Wolff J.A., Malone R.W., Williams P., Chong W., Acsadi G., Jani A., Felgner P.L. Direct gene transfer into mouse muscle in vivo. Science. 1990. 247(4949 Pt. 1): 1465—1468. https://doi.org/10.1126/science.1690918
  218. Krieg P.A., Melton D.A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 1984. 12(18): 7057—7070. https://doi.org/10.1093/nar/12.18.7057
  219. Dunn J.J., Studier F.W. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 1983. 166(4): 477—535.
  220. Conde J., Langer R., Rueff J. mRNA therapy at the convergence of genetics and nanomedicine. Nat. Nanotechnol. 2023. 18(6): 537—540. https://doi.org/10.1038/s41565-023-01347-w
  221. Dolgin E., Ledford H. mRNA COVID vaccines saved lives and won a Nobel — what’s next for the technology? https://www.nature.com/articles/d41586-023-03119-x
  222. Arevalo C.P., Bolton M.J., Le Sage V., 13 coauthors, Weissman D., Hensley S.E. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science. 2022. 378(6622): 899—904. https://doi. org/10.1126/science.abm0271
  223. Cohen J. ‘Landmark’ study finds artificial antibodies can protect against malaria. Science News. https://doi. org/10.1126/science.abl8960
  224. Egan K.P., Awasthi S., Tebaldi G., Hook L.M., Naughton A.M., Fowler B.T., Beattie M., Alameh M.G., Weissman D., Cohen G.H., Friedman H.M. A trivalent HSV-2 gC2, gD2, gE2 nucleoside-modified mRNA-LNP vaccine provides outstanding protection in mice against genital and non-genital HSV-1 infection, comparable to the same antigens derived from HSV-1. Viruses. 2023. 15(7): 1483. https://doi.org/10.3390/v15071483
  225. Sahin U., Oehm P., Derhovanessian E., 37 coauthors, Türeci Ö. An RNA vaccine drives immunity in checkpointinhibitor-treated melanoma. Nature. 2020. 585(7823): 107—112. https://doi.org/10.1038/s41586-020-2537-9
  226. Cromer D., Reynaldi A., Steain M., Triccas J.A., Davenport M.P., Khoury D.S. Relating in vitro neutralization level and protection in the CVnCoV (CUREVAC) Trial. Clin. Infect. Dis. 2022. 75(1): e878—e879. https://doi. org/10.1093/cid/ciac075